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Abstract

Functional solutions for the static response of beam- and plate-like repetitive lattice structures are obtained by

discrete Fourier transform. The governing equation is set up as a single operator form with the physical stiffness op-

erator acting as a convolution sum and containing a matrix kernel, which relates to the mechanical properties of the

lattice. Boundary conditions do not affect the equation form, and are taken into account at a subsequent stage of the

analysis. The technique of virtual load and substructure is proposed to formally close the repetitive lattice into a cyclic

structure, and to assure the equivalence of responses of the modified cyclic and original repetitive lattices. A discrete

periodic Green’s function is introduced for the modified structure, and the final displacement solutions are written as

convolution sums over the Green’s function and the actual external and virtual loads. Several example problems il-

lustrate the approach.

� 2002 Published by Elsevier Science Ltd.
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1. Introduction

A structure is said to be repetitive when its construction takes the form of a spatially regular lattice or
pattern of elements. A regular bridge framework, and honeycomb panel are examples of 1-D (beam-like)
and 2-D (plate-like) structures respectively. Their manufacture and construction are also repetitive, and this
leads to cost effective design solutions in a variety of mechanical, civil and aerospace engineering appli-
cations. Surveys of their dynamic and static analysis have been provided by Noor (1988), Li and Benaroya
(1992), and Mead (1996).
A general classification of the known approaches for analyzing repetitive lattice structures was proposed

by Noor (1988) to include four classes, namely: direct, discrete field, periodic structure and substitute
continuum methods. The method presented in this paper is a development of the second of these, which was
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defined by Dean (1976) as ‘‘The term discrete field analysis denotes the body of concepts used to obtain field
or functional solutions for systems most accurately represented as a lattice or a pattern of elements’’. The
basic idea of the approach is to take advantage of geometrical regularity of the lattice and to write equi-
librium and compatibility equations for a typical joint as a set of simultaneous finite difference equations.
The position of the joint in the structure is defined by one or several (for multi-dimensional lattices) in-
dependent parameters––discrete spatial coordinates––and the corresponding solutions for the governing
equations are viewed as discrete vector functions of these parameters.
One of the first discrete field analyses for regular lattices was presented by Ellington and McCallion

(1957), where the authors derived and solved a set of functional governing equations for a rectangular grid
under out-of-plane static loadings. During the next two decades, numerous contributions to the area were
made by Dean, including a monograph (1976) and ‘‘state-of-the-art’’ report (1975), Dean and Avent. In
terms of computational effort, the use of final functional solutions for the purposes of further stress,
buckling and other analyses is essentially cheaper than employing the conventional direct techniques (see,
for example, the works by Dean and Jetter (1972), Issa and Avent (1991), and Renton (1973)). However,
the procedures for developing and solving the governing finite difference equations ‘‘can be substantial for
complex lattice configurations’’ (Noor, 1988). Later, Avent et al (1991) proposed the compact matrix form
of the governing equations, KndðnÞ ¼ fðnÞ, where Kn is the matrix constructed from the finite difference
operators relating to the structural stiffness properties, fðnÞ and dðnÞ are the given joint loading and the
sought joint displacement vectors as functions of the discrete spatial parameter n. However, each entry to
the matrix Kn served there as a separate operator that had to be assembled individually according to the
type of a lattice under consideration and the boundary conditions. In the present paper, we set up the
alternative governing equation as the operator form, bKKd ¼ f, where bKK is a single physical stiffness operator
with a functional matrix kernel K. This form is initially written regardless of the boundary conditions,
therefore the kernel relates solely to the lattice geometric and material properties. Moreover, the regularity
of the lattice bar arrangement implies spatial invariance of the kernel (i.e., invariance in respect of the
values of spatial parameters), and the action of the stiffness operator, for any repetitive lattice, can be
reduced to a discrete convolution sum over the kernel and displacement functions. At the same time, the
required values of K can be easily determined from the stiffness matrix of the associate substructure––a
minimum set of structural elements interacting with one typical nodal set of the lattice.
The convolution form of the governing equation suggests effective solution by a transform method,

specifically by the discrete Fourier transform (DFT). Recent applications of DFT to the static analysis of
repetitive structures were made by Ryvkin et al. (1999) who considered the problem of optimal design of
infinite repetitive beam-like frameworks, and Moses et al. (2001) who outlined a general methodology for
the static analysis of infinite periodic structures. The case of finite beam-like repetitive structures was
studied earlier by Samartin (1988) who employed a traditional matrix form of the governing equation. The
boundary conditions were modelled there by introducing additional stiffness submatrices to convert the
global stiffness matrix into a block-circulant form. These submatrices were found from the boundary
conditions, and inversion of the resulting stiffness matrix was reduced to separate inversion of the de-
coupled blocks in the Fourier domain. In the present paper, we continue discussing the use of DFT for
finite structures analysis. However, we advocate the use of the functional operator form of governing
equation, Green’s function solutions, and propose the virtual load and substructure technique of simulating
periodic boundary conditions for lattice structures. Besides, a detailed consideration is given to the problem
of eliminating singularity related to the rigid-body motion, and extension of the methodology to the case of
2-D (plate-like) lattices is demonstrated.
Despite widespread application to problems of digital signal processing (see, for example, Damper,

1995; Dudgeon and Mersereau, 1984), Fourier transform methods have received comparatively little at-
tention in structural mechanics. The reasons why are well described by Bracewell (1986, p. 4). In short,
‘‘the response of a system to harmonic input is itself harmonic, at the same frequency, under two con-
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ditions: linearity and time invariance of the system properties’’. In turn, these two properties can be re-
stated as one: ‘‘that the response shall be related to the stimulus by convolution’’; it is the latter operation
of convolution that Bracewell regards as the central unifying concept behind such transform methods.
While time-invariance is commonplace, space-invariance (or translation symmetry) is less so. As Bracewell
remarks ‘‘Failure of this condition is the reason that bridge deflections are not studied by analyzing the
load distribution into sinusoidal components (space harmonics)’’. Obviously, a finite repetitive structure is
not space-invariant, since any translation in space will cause the structure to overstep its boundary and so
become distinguishable from its original configuration. However, one can utilize the spatial invariance of
the mathematical formulation only: with certain provisos, the form of governing equation may not depend,
at least formally, on values of the spatial parameters throughout the structure. Indeed, geometric regularity
of a repetitive lattice implies that the form of the governing equation may vary only at the lattice
boundaries. Further we can assume formal invariance of the stiffness operator and its kernel at the
boundary locations. This can be achieved by modifying the lattice with a virtual interlayer to provide
stiffness coupling between the boundary nodal locations equivalent to the coupling existing between ad-
jacent nodal locations inside the lattice. This procedure can be also viewed as the original lattice becoming
a part of a larger cyclically periodic domain; that was first outlined by Nuller (1981) to consider defor-
mation of multi-layered continuous plates. The physical effect of the virtual interlayer can be eliminated by
introducing additional compensating forces to satisfy the boundary and force equilibrium conditions. Thus,
the required spatial invariance of mathematical formulation can be achieved even for a finite structure.
The kernel, load and displacement functions may be then viewed as periodic sequences defined for the
modified lattice, and the DFT becomes an effective tool to seek the solution as a superposition of space
harmonics.
The method logically simplifies for the particular case of periodic or Born–von K�aarm�aan boundary con-

ditions. The imposition of these conditions to structural systems was well described by Keane and Price
(1989), and more recently by Langley (1997). In this case, no virtual interlayer is required to provide the
formal equivalence of internal and boundary nodal locations, the compensating forces are not introduced,
and the displacement solutions can be immediately written in terms of the corresponding Green’s function.
The approach is developed first in the context of a 1-D setting, and then extended to the 2-D case; in

Section 4, several examples are given to demonstrate its practical use.

2. Beam-like structures

2.1. Boundary value problem definition. Convolution form of the governing equation

As focus for discussion, consider the planar truss, Fig. 1(a), presumed fixed in some as yet unspecified
manner. Isolate mentally a minimum set of nodes, which generates the rest of the structural joints
if translated along the axial direction of the beam to some equidistant spatial locations numbered as
n ¼ 0; 1; 2; . . . ;N . We call such a set of joints the typical (repeating) nodal location or nodal set, and define
the associate substructure as consisting of all the structural bar-elements that interact with the joints of one
typical set; see Fig. 1(b) and (c).
The associate substructure stiffness matrix can be found by conventional means to give a 3� 3 block

form, where the three medial submatrices may be denoted Kð1Þ, Kð0Þ and Kð�1Þ to give static equilibrium
in the form:

� � � � � � � � �
Kð1Þ Kð0Þ Kð�1Þ
� � � � � � � � �

0@ 1A dðn� 1Þ
dðnÞ
dðnþ 1Þ

0@ 1A ¼
fðn� 1Þ
fðnÞ
fðnþ 1Þ

0@ 1A: ð1Þ
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Here, the column-vectors of the generalized loads and displacements, fðnÞ and dðnÞ, are associated with
degrees of freedom of the nodes at the corresponding spatial locations. Physically, block Kð0Þ relates to the
stiffness of the entire associate substructure, and blocks Kð1Þ, Kð�1Þ are responsible for the right- and left-
hand stiffness coupling between the adjacent nodal locations. Then, for any location n ¼ 1; 2; . . . ;N � 1, we
can write:

Kð1Þdðn� 1Þ þ Kð0ÞdðnÞ þ Kð�1Þdðnþ 1Þ ¼ fðnÞ: ð2Þ

This second order finite difference scheme represents the governing equation of static equilibrium of an
arbitrary repetitive beam-like lattice. It can be reduced to the operator form,bKKd ¼ f: ð3Þ

This representation implies that the operator bKK acts on the entire vector function d, not only on a specific
vector assigned by dðnÞ. bKK is the stiffness operator for the lattice, which carries a functional matrix kernel
Kðn� n0Þ and acts as a discrete convolution summation,Xnþ1

n0¼n�1
Kðn� n0Þdðn0Þ ¼ fðnÞ; n ¼ 1; 2; . . . ;N � 1; dð0Þ; dðNÞ: ð4Þ

The solution dðnÞ for Eq. (2) or (4) is a vector function of the discrete parameter n that fully describes some
equilibrium state of the static deformation occurring in the beam in response to an external load pattern,
assigned by the function fðnÞ, and boundary conditions dð0Þ, dðNÞ. Function dðnÞ can be termed, therefore,
the displacement state function, whereas expression (4) represents the boundary value problem for finding
dðnÞ at n ¼ 1; 2; . . . ;N � 1.
Eq. (4) may be rewritten symbolically, employing the symbol 	 for the convolution, as
K 	 d ¼ f; ð5Þ

and can be treated by employing a transform method that converts the operation of convolution into
ordinary matrix multiplication in the transformed domain; an adaptation of the DFT method for solving

Fig. 1. Repetitive beam-like truss (a); typical nodal location (b) and associate substructure (c). Visualization of the formal coupling

between boundary nodal locations (d), and closure into (N þ 1)-periodic cyclic structure (e).
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(4) and (5) will be described in the Section 2.2. In general, the state function will consist of two parts: a
particular solution of the inhomogeneous form (4) and (5), pertaining to a given external load fðnÞ, and a
solution to the homogeneous equation

K 	 d ¼ 0 ð6Þ
(0 is the zero vector), relating to the trivial load, fðnÞ ¼ 0 for all n.

2.2. Discrete Fourier transform method

2.2.1. The (N þ 1)-periodic lattice
By definition, the DFT is performed over infinite periodic sequences (see, for example, Damper, 1995).

To satisfy this requirement we formally extend the definition intervals of functions dðnÞ, fðnÞ and KðnÞ in
the (N þ 1)-periodic way:

dðnþ vðN þ 1ÞÞ,dðnÞ; fðnþ vðN þ 1ÞÞ,fðnÞ; Kðnþ vðN þ 1ÞÞ,KðnÞ;
n ¼ 0; 1; 2; . . . ;N ; v ¼ 0;
1;
2; . . . : ð7Þ

Then the validity of (4) for n ¼ 1; 2; . . . ;N � 1 implies also that it holds for all the periodically cor-
responding values of this parameter, nþ vðN þ 1Þ. Moreover, the periodicity of the kernel function
would mean the validity of the governing equation (4) at the boundary nodal locations, n ¼ 0, N, as well.
Indeed, the (N þ 1)-periodic kernel KðnÞ with non-trivial values Kð0Þ and Kð
1Þ will yield also non-
zero Kð�NÞ ¼ Kð1Þ and KðNÞ ¼ Kð�1Þ to formally imply the stiffness coupling between the boundary
locations:

Kð�NÞdðNÞ þ Kð0Þdð0Þ þ Kð�1Þdð1Þ ¼ fð0Þ;
Kð1ÞdðN � 1Þ þ Kð0ÞdðNÞ þ KðNÞdð0Þ ¼ fðNÞ:

ð8aÞ

Here, fð0Þ and fðNÞ are as yet unknown boundary loads that will be discussed below. With the use of
periodic extension for functions dðnÞ and KðnÞ, Eq. (8a) can be rewritten as

Kð1Þdð�1Þ þ Kð0Þdð0Þ þ Kð�1Þdð1Þ ¼ fð0Þ;
Kð1ÞdðN � 1Þ þ Kð0ÞdðNÞ þ Kð�1ÞdðN þ 1Þ ¼ fðNÞ;

ð8bÞ

which is identical with (4) for n ¼ 0 and N. The coupling (8a) is shown in Fig. 1(d). It is symbolized there by
modifying the lattice with a virtual substructure, which represents the bar-elements, interconnecting two
neighbouring nodal sets, and formally provides the required continuity at the ends of the lattice. The pe-
riodicity of functions (7), defined for the modified lattice, may be then visualised by closing the structure to
form the ring depicted in Fig. 1(e).
Thus we have converted the original boundary value problem for a repetitive beam-like lattice discussed

in the comments to Eq. (4), into the mathematically equivalent problem for the modified cyclic structure
shown in Fig. 1e. There are given:

(a) Eq. (4), which is valid for n ¼ 0; 1; . . . ;N ,
(b) the displacement vectors dð0Þ and dðNÞ,
(c) the external loads fðnÞ at n ¼ 1; 2; . . . ;N � 1;

and we seek to find:

(a) the boundary loads fð0Þ and fðNÞ,
(b) the displacements dðnÞ at n ¼ 1; 2; . . . ;N � 1.
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The advantage of this problem formulation is the uniformity of the convolutional coupling in Eq. (4) for
all n, including n ¼ 0 and N. This allows one to treat the problem with the use of DFTs in a very natural
way.
It is important to note that the boundary force reactions (left side of (8b)) are given by two components:

reactions of the actual and virtual substructures, i.e.

fðaÞð0Þ þ fðvÞð0Þ ¼ fð0Þ; fðaÞðNÞ þ fðvÞðNÞ ¼ fðNÞ; ð8cÞ

as opposed to the non-boundary reactions, for which we can write simply

fðaÞðnÞ ¼ fðnÞ; n ¼ 1; 2; . . . ;N � 1: ð8dÞ

Since only the actual addends of the load vectors fð0Þ and fðNÞ are physically present, the virtual terms can
be viewed as additional compensating forces, which would eliminate the effect of virtual interlayer, if the
modified lattice solution satisfied the original beam boundary conditions. Then the equivalence of static
solutions for the original and modified problems can be achieved. For a boundary value problem (4) with
specified displacements dð0Þ and dðNÞ, the resultant vectors fð0Þ and fðNÞ can be found at once, as will be
described in Section 2.2.4. However, for problems with partially specified boundary displacements, when
the corresponding (actual) boundary forces are given instead, the unknown actual and virtual components
of vectors (8c) have to be evaluated separately by employing boundary conditions (4) and also––the stiffness
matrix relationship for the virtual substructure (Example 4.3, Section 4).

2.2.2. Particular non-homogeneous solution and the Green’s function
Apply the finite DFT to both sides of Eq. (4), where functions dðnÞ, fðnÞ and Kðn� n0Þ possess the

properties (7) and (8a),XN
n¼0

Xnþ1
n0¼n�1

Kðn� n0Þdðn0Þe�i2pp n
Nþ1 ¼

XN
n¼0
fðnÞe�i2pp n

Nþ1: ð9Þ

Then multiply and divide the left-hand side of (9) by e�i2ppðn
0=ðNþ1ÞÞ, introduce parameter s ¼ n� n0, and

rearrange to giveXN
n¼0

Xnþ1
n0¼n�1

Kðn� n0Þe�i2pp n�n0
Nþ1 dðn0Þe�i2pp n0

Nþ1 ¼
X1
s¼�1
KðsÞe�i2pp s

Nþ1
XN
n¼0
dðn� sÞe�i2pp n�s

Nþ1: ð10Þ

Due to the (N þ 1)-periodicity of dðnÞ,XN
n¼0
dðn� sÞe�i2pp n�s

Nþ1 ¼
XN
n¼0
dðnÞe�i2pp n

Nþ1 ð11Þ

for any integer s. Therefore we can introduce the Fourier images of functions (7) as

DðpÞ,
XN
n¼0
dðnÞe�i2pp n

Nþ1;

FðpÞ,
XN
n¼0
fðnÞe�i2pp n

Nþ1;

QNþ1ðpÞ,
X

n�n0¼0;
1
Kðn� n0Þe�i2pp n�n0

Nþ1;

ð12Þ

and write the transformed (p-domain) governing equation, according to (9)–(11), in the form
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QNþ1ðpÞDðpÞ ¼ FðpÞ; p ¼ 0; 1; 2; . . . ;N : ð13Þ

Assume the matrix QNþ1ðpÞ is invertible for all values of p; then the p-domain solution reads

DðpÞ ¼ Q�1
Nþ1ðpÞFðpÞ; ð14Þ

and application of the inverse DFT to (14) yields the sought n-domain solution in the form

dðnÞ ¼ 1

N þ 1

XN
p¼0
DðpÞei2pp n

Nþ1 ¼ 1

N þ 1

XN
p¼0
Q�1

Nþ1ðpÞFðpÞei2pp
n

Nþ1: ð15Þ

Further, we substitute the Fourier image FðpÞ into this equation, employing n ¼ n0 for (12) to distinguish
the summation index there from the argument of function dðnÞ, and rearrange it to give

dðnÞ ¼ 1

N þ 1

XN
p¼0
Q�1

Nþ1ðpÞ
XN
n0¼0
fðn0Þe�i2pp n0

Nþ1 ei2pp
n

Nþ1 ¼
XN
n0¼0
GNþ1ðn� n0Þfðn0Þ; ð16Þ

GNþ1ðn� n0Þ, 1

N þ 1

XN
p¼0
Q�1

Nþ1ðpÞei2pp
n�n0
Nþ1: ð17Þ

Here, the matrix function GNþ1ðn� n0Þ is the Green’s function for Eq. (4) in the cyclic (N þ 1)-periodic
domain. Thus a particular non-homogeneous solution to (4) is given by the convolution sum over the
Green’s and the load functions. The Green’s function is given by the inverse DFT of the inverted Fourier
image of the matrix kernel of the stiffness operator. And the physical sense of the Green’s function, ac-
cording to (16), is that, up to a rigid-body motion, the rth column of GNþ1ðn� n0Þ represents deflections of
the nth nodal set caused by the rth component of a unit load vector applied to the n0th nodal location of a
repetitive framework, which is formally closed to form the (N þ 1)-periodic ring. Obviously, this Green’s
function is invariable with respect to the boundary conditions in (4), and is defined only by the member
stiffnesses and geometry of a considered lattice.
In fact, the above assumption on the invertibility of QNþ1ðpÞ, used in (14), is not valid for p ¼ 0. Indeed,

due to the general properties of a structure stiffness matrix, the matrix QNþ1ð0Þ ¼ Kð1Þ þ Kð0Þ þ Kð�1Þ
always contains either zero or linear dependent columns. Then

DetQNþ1ð0Þ ¼ 0; ð18Þ

and this will dictate the following: (i) the load fðnÞ must satisfy a self-equilibrium condition, otherwise the
solution does not exist, and (ii) the term for p ¼ 0 in the expression for the Green’s function (16) must be
corrected. Below we discuss these points in more details.
The singularity of matrix QNþ1ð0Þ implies that Eq. (13), for the case of p ¼ 0,

QNþ1ð0ÞDð0Þ ¼ Fð0Þ; ð19Þ

has solutions only if vector Fð0Þ is orthogonal to the nullspace of the conjugate and transposed matrix
QH

Nþ1ð0Þ. Here, QNþ1ð0Þ is real and symmetric, therefore QH
Nþ1ð0Þ ¼ QNþ1ð0Þ. Then this requirement can be

written as

YTFð0Þ ¼ 0; ð20Þ

where matrix Y is constructed from b column-vectors comprising a basis in the nullspace of matrixQNþ1ð0Þ,
and 0 is a zero-vector of dimensionality b. Note, vector Fð0Þ represents, due to (12), the sum of all external
nodal forces added in a translation sense around the ring,
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Fð0Þ ¼
XN
n¼0
fðnÞ; ð21Þ

and the columns of Y, as will be shown in Section 2.2.3, describe the structure’s rigid-body motions only;
therefore, (20) gives the equilibrium condition for external loads at the modified lattice along the global
coordinate directions.
Due to the orthogonality (20), a non-trivial solution to Eq. (19) can be sought as a vector from

the adjoint subspace (spanned by the eigenvectors wr of QNþ1ð0Þ relating to its non-zero eigenvalues
Kr):

Dð0Þ ¼
XR�b

r¼1
arwr; ð22Þ

where R is the dimensionality of the vectors in (4) and (13). Then substitute (22) into (19) to obtain

Fð0Þ ¼ QNþ1ð0Þ
XR�b

r¼1
arwr ¼

XR�b

r¼1
Krarwr: ð23Þ

Further, introduce W ¼ ðw1 w2 � � � wR�b Þ as a rectangular matrix of size R� ðR� bÞ, matrix K ¼
diag ðK1;K2; . . . ;KR�bÞ as a square matrix of size ðR� bÞ � ðR� bÞ, and the vector a ¼ ð a1 a2 � � � aR�b ÞT.
Then we may rewrite (22) and (23) as

Dð0Þ ¼Wa;
Fð0Þ ¼WKa;

ð24Þ

wherefrom

Dð0Þ ¼WK�1WþFð0Þ; ð25Þ

here,Wþ is the pseudoinverse of matrixW. Therefore, the expression for the Green’s function (17) has to be
corrected, due to (15), (16) and (25), as the following:

GNþ1ðn� n0Þ ¼ 1

N þ 1

XN
p¼0

eGGNþ1ðpÞei2pp
n�n0
Nþ1; ð26aÞ

eGGNþ1ðpÞ ¼
Q�1

Nþ1ðpÞ; p > 0;

WK�1Wþ; p ¼ 0;

�
ð26bÞ

where the matrix function eGGNþ1ðpÞ serves as the Fourier image of the Green’s function GNþ1ðn� n0Þ and
exists for all values of p. Thus, a particular solution to (4) may be then taken in the form (16), where the
Green’s function is given by the expressions (26a) and (26b).

2.2.3. General solution of homogeneous equation
The general solution of the homogeneous form (6) describes deflection of the ring due to the trivial load

pattern, fðnÞ ¼ 0, n ¼ 0; 1; . . . ;N . Obviously, for any stiff lattice, this solution can be associated with the
structure’s rigid-body motions only (the zeroth space harmonics). Thus, the p-domain homogeneous
equation,

QNþ1ðpÞDðpÞ ¼ 0; ð27Þ
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obtained by applying the DFT to (6), can have non-trivial solutions only for p ¼ 0, i.e.

DðpÞ ¼ dp;0Dð0Þ ¼ dp;0

Xb
r¼1

Cryr � dp;0YC: ð28Þ

Here, dp;0 is the Kronecker delta, yr are the basis vectors spanning the b-dimensional nullspace of matrix
QNþ1ð0Þ; the matrix Y is constructed of b column-vectors yr, and the vector C consists of b participation
coefficients Cr. Then the n-domain solution is found by applying the inverse Fourier transform upon (28) to
read

dðnÞ ¼ 1

N þ 1

XN
p¼0
DðpÞei2pp n

Nþ1 ¼ 1

N þ 1
Dð0Þ ¼ 1

N þ 1
YC: ð29Þ

The constant factor ðN þ 1Þ�1 of the solution (29) can be included into the coefficients Cr, so we shall omit it
henceforth. The basis vectors yr relate to the rigid-body motion of the ring in b ¼ 2 or 3 principal directions
(for a planar and space truss respectively) of the global coordinate system. For instance, for a pin-jointed
truss of the type shown in Fig. 1, one would get simply

dðnÞ ¼ ð I I ÞTC � ð 1 0 1 0 ÞTC1 þ ð 0 1 0 1 ÞTC2; ð30Þ
where I is the 2� 2 identity matrix. The conditions required for evaluation of the coefficients Cr will be
discussed in the next section.
The general form of solution for Eq. (4) can be written conventionally (for example, Kelley and Peterson,

2000), as the sum of a particular inhomogeneous and the general homogeneous solutions, which are given
by the expressions (16) and (29) respectively, i.e. we finally obtain

dðnÞ ¼
XN
n0¼0
GNþ1ðn� n0Þfðn0Þ þ YC; n ¼ 0; 1; 2; . . . ;N : ð31Þ

2.2.4. The boundary loads and vector C
As was mentioned above (the comments to formula (8c)), the boundary loads fð0Þ and fðNÞ do not

represent genuine structural reaction, and have to be evaluated by analytical means. Besides, knowledge of
vector C is also required for employing the solution form (31). To find these vectors, rearrange (31) as

dðnÞ ¼ GNþ1ðnÞfð0Þ þGNþ1ðn� NÞfðNÞ þ �ddðnÞ þ YC; ð32Þ
where �ddðnÞ is the known vector,

�ddðnÞ ¼
XN�1

n0¼1
GNþ1ðn� n0Þfðn0Þ; ð33Þ

and utilize the boundary conditions (4):

dð0Þ ¼ GNþ1ð0Þfð0Þ þGNþ1ð�NÞfðNÞ þ �ddð0Þ þ YC;
dðNÞ ¼ GNþ1ðNÞfð0Þ þGNþ1ð0ÞfðNÞ þ �ddðNÞ þ YC:

�
ð34Þ

Then vectors fð0Þ and fðNÞ can be expressed through the b coefficients Cr (elements of C) as

fð0Þ
fðNÞ

	 

¼ GNþ1ð0Þ GNþ1ð�NÞ
GNþ1ðNÞ GNþ1ð0Þ

	 
�1
dð0Þ � �ddð0Þ � YC
dðNÞ � �ddðNÞ � YC

	 

: ð35aÞ

The equilibrium requirement (20) implies b additional conditions on values of these coefficients. As a result,
expressions (20) and (35a) provide one with a sufficient system of linear equations for finding all the
components of vectors fð0Þ, fðNÞ and C. Further, by substituting these vectors into (31), we obtain the
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analytical functional solution to (4) in terms of known components only. There are two important par-
ticular cases of problem (4). Assume we have dð0Þ ¼ dðNÞ, and: (1) the N-periodic Born–von Karman ring
can be obtained by directly merging the ends of the lattice, but the resultant vector fðaÞð0Þ þ fðaÞðNÞ ¼ fð0Þ is
not known (it may contain unknown support reactions), or (2) the Born–von Karman ring still cannot be
obtained (say, the merged elements would have larger than typical cross-section area, as in Example 4.1,
Section 4). In both cases, the virtual interlayer is not introduced, N-periodic functions have to be used in
(21) and (31), and the vector fð0Þ can be sought as

fð0Þ � fðNÞ ¼ G�1
N ð0Þ dð0Þ

 
�
XN�1

n¼1
GN ðn� n0Þfðn0Þ � YC

!
: ð35bÞ

If vector fð0Þ is known in advance for the first of these cases (for some symmetric problem, for example,
fðaÞð0Þ ¼ �fðaÞðNÞ, so that fð0Þ ¼ 0), then a knowledge of dð0Þ is not required, and, up to a rigid-body
displacement, the solution is immediately given by formula (16), where index N is to be replaced with N � 1.

3. Plate-like structures

3.1. 2-D Boundary value problem definition

The proposed approach can be extended to the case of multi-dimensional lattices, i.e., when two or three
independent parameters are required to define the location of a repeating nodal set inside the lattice. In this
paper, we discuss 2-D, or ‘‘plate-like’’ structures only.
The typical nodal location ðn;mÞ of a plate-like lattice is defined to comprise a minimal set of nodes, such

that, if translated along the orthogonal directions of the x- and y-coordinate axes, would cover the rest of
the structural joints; and the associate substructure consists then of all the structural elements interacting
with the nodes of one typical set ðn;mÞ. An illustrative example is shown in Fig. 2(a) and (b), where a single
node gives the repeating nodal pattern of a square cell grid; further examples (Figs. 4–6) will be considered
in Section 4.
The equation of static equilibrium for the 2-D lattices can be written similarly, by considering the as-

sociate substructure stiffness matrix arranged to an appropriate block form, wherefrom, one generally
obtains

fðn;mÞ ¼ Kð1; 1Þdðn� 1;m� 1Þ þ Kð0; 1Þdðn;m� 1Þ þ Kð�1; 1Þdðnþ 1;m� 1Þ

þ Kð1; 0Þdðn� 1;mÞ þ Kð0; 0Þdðn;mÞ þ Kð�1; 0Þdðnþ 1;mÞ

þ Kð1;�1Þdðn� 1;mþ 1Þ þ Kð0;�1Þdðn;mþ 1Þ þ Kð�1;�1Þdðnþ 1;mþ 1Þ: ð36Þ

Here, vector functions fðn;mÞ and dðn;mÞ are the load and displacement functions of the two discrete
spatial parameters respectively, and the matrix function Kðn� n0;m� m0Þ is the 2-D kernel of the stiffness
operator (3). The value Kð0; 0Þ of the kernel is determined from the stiffness properties of the entire as-
sociate substructure, while the remaining values describe the stiffness coupling between adjacent nodal
locations ðn;mÞ and ðn0;m0Þ. If the coupling between some of the neighbouring locations is absent (as, for
instance, between the nodes ðn;mÞ and ðn� 1;mþ 1Þ of the grid, Fig. 2), then the corresponding value of
the kernel reads a zero matrix of size R, the dimensionality of the displacement and load vectors in (36).
The second order partial finite difference equation (36) can be reduced to the double convolution sum

over the kernel and displacement functions:
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Xnþ1
n0¼n�1

Xmþ1
m0¼m�1

Kðn� n0;m� m0Þdðn0;m0Þ ¼ fðn;mÞ; n ¼ 1; 2; . . . ;N � 1; m ¼ 1; 2; . . . ;M � 1:

ð37aÞ

Provided that the 2-D boundary conditions,

dðn; 0Þ; dðn;MÞ; dð0;mÞ; dðN ;mÞ; n ¼ 0; 1; . . . ;N ; m ¼ 0; 1; . . . ;M ; ð37bÞ

are known, the above represents the boundary value problem for a plate-like lattice. The solution dðn;mÞ
describes the response of the lattice to a given pattern of static external loads, assigned by the function
fðn;mÞ, as regards the boundary conditions (37b).

3.2. 2-D discrete Fourier transform method

3.2.1. Particular non-homogeneous solution and the 2-D Green’s function
Employing 2-D DFT for solving (37a), we assume formally that the displacement, load and kernel

functions are ‘‘rectangular’’ periodic, i.e., for dðn;mÞ:

Fig. 2. Square cell grid (a) and its associate substructure (b). Formal coupling between the opposite edges of the grid (c) and closure

into (N þ 1;M þ 1)-periodic torus (d).
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dðnþ vðN þ 1Þ;mÞ ¼ dðn;mþ wðM þ 1ÞÞ ¼ dðn;mÞ;

n ¼ 0; 1; . . . ;N ; m ¼ 0; 1; . . . ;M ; v ¼ 0;
1;
2; . . . ; w ¼ 0;
1;
2; . . . ð38Þ

This is required according to traditional theory (for example, Dudgeon and Mersereau, 1984) and, for the
case of dðn;mÞ and fðn;mÞ, does not amend the original problem definition. However, the periodicity of the
kernel Kðn� n0;m� m0Þ, similar to the 1-D case, would imply the validity of the governing equation (37a) at
the edges of the structure, i.e. at all the boundary nodes ðn; 0Þ, ðn;NÞ, ð0;mÞ and ðN ;mÞ. Therefore, the
structure has to be formally modified with a virtual interlayer providing the same coupling between the
boundary nodal locations as exists between the internal nodes see Fig. 2(c). The procedure may be sym-
bolized by closing the lattice into the conceptual torus, as depicted in Fig. 2(d).
By applying the 2-D DFT to Eq. (37a) we obtain the transform domain relationship

QNþ1;Mþ1ðp; qÞDðp; qÞ ¼ Fðp; qÞ ð39Þ

where the convolution sum has been replaced by ordinary matrix multiplication, and the 2-D Fourier
images of displacement, load, and kernel functions are defined accordingly as

Dðp; qÞ,
XN
n¼0

XM
m¼0
dðn;mÞe�i2p p n

Nþ1þ q m
Mþ1ð Þ;

Fðp; qÞ,
XN
n¼0

XM
m¼0
fðn;mÞe�i2p p n

Nþ1þ q m
Mþ1ð Þ;

QNþ1;Mþ1ðp; qÞ,
Xnþ1

n0¼n�1

Xmþ1
m0¼m�1

Kðn� n0;m� m0Þe�i2p p n�n0
Nþ1þ q m�m0

Mþ1


 �
:

ð40Þ

Then the transformed domain solution reads

Dðp; qÞ ¼ Q�1
Nþ1;Mþ1ðp; qÞFðp; qÞ: ð41Þ

Further application of the inverse 2-D DFT and introduction of the 2-D Green’s function,

GNþ1;Mþ1ðn� n0;m� m0Þ, 1

ðN þ 1ÞðM þ 1Þ
XN
p¼0

XM
q¼0
Q�1

Nþ1;Mþ1ðp; qÞe
i2p p n�n0

Nþ1þ q m�m0
Mþ1


 �
; ð42Þ

provide a particular non-homogeneous solution in the form of the double convolution sum,

dðn;mÞ ¼
XN
n0¼0

XM
m0¼0
GNþ1;Mþ1ðn� n0;m� m0Þfðn0;m0Þ; ð43Þ

Here, the edge load functions,

fðn; 0Þ; fðn;MÞ; fð0;mÞ; fðN ;mÞ; n ¼ 0; 1; . . . ;N ; m ¼ 1; 2; . . . ;M � 1; ð44Þ

not specified originally by the problem definition (37a) and (37b), can be found by employing the boundary
conditions as will be discussed later. The physical sense of the 2-D Green’s function reads: up to a rigid-
body motion, the rth column of GNþ1;Mþ1ðn� n0;m� m0Þ represents deflections of nodes at the location
ðn;mÞ due to the rth component of a unit load vector applied to the location ðn0;m0Þ of a plate-like lattice,
which is conceptually closed to form the (N þ 1;M þ 1)-periodic torus.
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3.2.2. Final solution form. Computational effectiveness of the approach
Using arguments similar to the 1-D case, we build the general solution of the homogeneous equation,Xnþ1

n0¼n�1

Xmþ1
m0¼m�1

Kðn� n0;m� m0Þdðn0;m0Þ ¼ 0; ð45Þ

as the following:

dðn;mÞ ¼
Xb
r¼1

Cryr ¼ YC: ð46Þ

Here, yr are eigenvectors of the matrix QNþ1;Mþ1ð0; 0Þ relating to the zero eigenvalues and describing
therefore the rigid-body displacements of the entire lattice; b is the dimensionality of the lattice (b ¼ 2 for
planar, or 3 for space structures); Cr are arbitrary participation coefficients; matrix Y and vector C are
constructed from the individual elements yr and Cr respectively.
The singularity of QNþ1;Mþ1ð0; 0Þ implies that the expression for the 2-D Green’s function (42) has to be

corrected to read

GNþ1;Mþ1ðn� n0;m� m0Þ ¼ 1

ðN þ 1ÞðM þ 1Þ
XN
p¼0

XM
q¼0

eGGNþ1;Mþ1ðp; qÞe
i2p p n�n0

Nþ1þ q m�m0
ðMþ1Þ

� �
;

eGGNþ1;Mþ1ðp; qÞ ¼
Q�1

Nþ1;Mþ1ðp; qÞ; p þ q > 0;

WK�1Wþ; p ¼ q ¼ 0:

( ð47Þ

Here, eGGNþ1;Mþ1ðp; qÞ is the 2-D Fourier image of the Green’s function, and the matrices

K ¼ diag ðK1;K2; . . . ;KR�bÞ; W ¼ ðw1 w2 � � � wR�b Þ ð48Þ

are respectively constructed from the non-zero eigenvalues and the corresponding eigenvectors of the
matrix QNþ1;Mþ1ð0; 0Þ.
Summarising the above results, we write the general solution to (37a) in the form

dðn;mÞ ¼
XN
n0¼0

XM
m0¼0
GNþ1;Mþ1ðn� n0;m� m0Þfðn0;m0Þ þ YC; n ¼ 0; 1; . . . ;N ; m ¼ 0; 1; . . . ;M ;

ð49Þ

where the boundary loads (44) and the vector C can be found by employing the equilibrium requirement,

YTFð0; 0Þ � YT
XN
n¼0

XM
m¼0
fðn;mÞ ¼ 0; ð50Þ

and boundary conditions (37b). Indeed, by substituting (37b) to (49) we can express the edge load vectors
(44) through the b components of vector C for all the required values of parameters n and m. Further
substitution of these vectors into (50) gives b equations to determine the coefficients Cr; so that one can
finally rewrite solution (49) in terms of only known components.
Similar to the 1-D case (see the comments to equation (35b)), the task of finding the boundary loads can

be simplified, when less than four functions (37b) are required to specify displacements along the boundary
line of lattice; i.e. when we can write dðn; 0Þ ¼ dðn;MÞ, n ¼ 0; 1; . . . ;N , or/and dð0;mÞ ¼ dðN ;mÞ,
m ¼ 0; 1; . . . ;M (Examples 4.4–4.6, Section 4). In these cases, the periodicity of functions in (49) and (50)
reduces to ðN ;M þ 1Þ, ðN þ 1;MÞ or ðN ;MÞ accordingly, and introduction of functions fðn;MÞ and/or
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fðN ;mÞ is not required; that will considerably reduce computational efforts for finding the boundary loads
around the lattice. The situation of mixed boundary conditions, when actual parts of boundary loads are
given instead of displacements at some areas along the lattice edge, is also similar to the beam-like case. The
unknown actual and virtual components of vectors (44) then have to be evaluated separately by employing
both the known boundary conditions and the force–displacement relationship (stiffness matrix) for the
virtual interlayer (Example 4.4, Section 4).
The tasks of finding the boundary loads, parametric inversion of matrix QNþ1;Mþ1ðp; qÞ and further

calculation of the Green’s functions (47) contribute most to the overall computational cost of this ap-
proach. It is noteworthy that the last two of these have to be performed once only for a given lattice, and
the cost of the parametric inversion does not depend on the size of lattice. The standard algorithms for
matrix inversion (for solving Ax ¼ b) requires �n3 processes, Strang (1988), where n is the order of the
matrix. The cost of the present method can be then estimated as �ðN þMÞ3 þ ðNMÞ2 processes––for the
boundary loads and Green’s function respectively, compared with �ðNMÞ3 processes––for the direct matrix
method. For beam-like lattices this estimate is �N 0 þ N 2 (the cost of boundary loads also becomes inde-
pendent of the size of lattice) and �N 3. Thus, the method is most effective for the repeated analysis of a
large lattice problem with varying boundary conditions and load patterns.

4. Illustrative examples

Example 4.1. For the repetitive pin-jointed plane truss shown in Fig. 3, assume L is the length of the non-
diagonal bars; E and A are Young’s modulus and cross-section area of all bars respectively. The associate
substructure of the truss is shown in Fig. 3(b). The kernel Kðn� n0Þ for this truss was found from the
associate substructure stiffness matrix according to (1) to read

Kð1Þ ¼ �EA

2
ffiffiffi
2

p
L

2
ffiffiffi
2

p
0 1 1

0 0 1 1

1 �1 2
ffiffiffi
2

p
0

�1 1 0 0

0BBB@
1CCCA; Kð0Þ ¼ EA

2L

4þ
ffiffiffi
2

p
0 0 0

0 2þ
ffiffiffi
2

p
0 �2

0 0 4þ
ffiffiffi
2

p
0

0 �2 0 2þ
ffiffiffi
2

p

0BBB@
1CCCA;

Kð�1Þ ¼ KTð1Þ; and Kðn� n0Þ ¼ 0 if n� n0 6¼ 0;
1: ð51Þ

Fig. 3. Bridge deflection (a) and lack of fit (c) problems with a planar X-braced truss; associate substructure of the truss (b). Virtual

interlayer (d) and the boundary loads (e).

4304 E.G. Karpov et al. / International Journal of Solids and Structures 39 (2002) 4291–4310



For the bridge deflection problem, Fig. 3(a), we have

fðnÞ ¼ dn;5ð 0 0 0 �P ÞT; n ¼ 1; 2; . . . ; 9; dð0Þ ¼ dð10Þ ¼ 0 ð52Þ
(the ends of the truss are fixed). The virtual interlayer is not required, and the N-periodic solution (N ¼ 10)
can be built according to (31). The unknown vectors C and fð0Þ ¼ fðaÞð0Þ þ fðaÞð10Þ must satisfy the
boundary (35b) and equilibrium (20) requirements. The Fourier images of the kernel and Green’s function
are to be found according to (12) and (26b) respectively, where

K ¼ EA
L

ffiffiffi
2

p
0

0 2þ
ffiffiffi
2

p
	 


; W ¼ �1 0 1 0
0 �1 0 1

	 
T
; Y ¼ 1 0 1 0

0 1 0 1

	 
T
; ð53Þ

and the values of kernel are given by (51). The diagonal elements of K are the non-zero eigenvalues of
matrix QN ð0Þ, the columns of W are the corresponding eigenvectors, and the columns of Y give a basis in
the nullspace ofQNð0Þ. The Green’s function GN ðn� n0Þ is then calculated according to (26a), and the static
response is given by the displacement function,

dðnÞ ¼ G10ðnÞfð0Þ þG10ðn� 5Þfð5Þ þ YC; C ¼ P
L
EA

ð 0 �6:7678 ÞT;

fð0Þ ¼ P ð 0 0:50444 0 0:49556 ÞT; n ¼ 0; 1; . . . ; 10: ð54Þ

Example 4.2. Now consider the lack of fit problem shown in Fig. 3(c):

fðnÞ ¼ 0; n ¼ 1; 2; . . . ; 9; dð0Þ ¼ 0; dð10Þ ¼ Dlð 1 0 1 0 ÞT: ð55Þ
Since dð0Þ 6¼ dð10Þ here, the virtual interlayer is introduced as shown in Fig. 3(d) and (e), and the (N þ 1)-
periodic solution has to be built, as given by (31):

dðnÞ ¼ G11ðnÞfð0Þ þG11ðn� 10Þfð10Þ þ YC; fð0Þ ¼ Dl
EA
L

ð�fx �fy �fx fy ÞT;

fð10Þ ¼ Dl
EA
L

ð fx �fy fx fy ÞT; fx ¼ 1:47533; fy ¼ 0:32777; C ¼ Dlð 1=2 0 ÞT; ð56Þ

where the summarized end loads fð0Þ, fð10Þ and vector C were found by using (20) and (35a).
Example 4.3. The approach for finding the end loads varies, when some of their actual components are

specified instead of the corresponding boundary displacements. Assume, for instance, that

fðnÞ ¼ 0; n ¼ 1; 2; . . . ; 9; dð0Þ ¼ 0; fðaÞð10Þ ¼ ð P 0 P 0 ÞT: ð57Þ
The virtual components of the end loads will compensate the effect of the virtual substructure (see Fig. 3(d)
and (e)), if they satisfy the stiffness matrix relationship for the latter, which reads here

fðvÞð10Þ
fðvÞð0Þ

	 

¼ K1 . . .
K2 . . .

	 

dð10Þ
dð0Þ

	 

; K1 ¼

EA

2
ffiffiffi
2

p
L

1þ 2
ffiffiffi
2

p
�1 0 0

�1 1 0 0
0 0 1þ 2

ffiffiffi
2

p
1

0 0 1 1

0BB@
1CCA; K2 ¼ Kð1Þ

ð58Þ
(only the left half of the virtual substructure stiffness matrix is required, since dð0Þ ¼ 0). This expression can
be termed the compensation demand; if employed together with the boundary (57), equilibrium (20) con-
ditions and formulas (8c), it gives a sufficient system of linear equations for finding all the unknown vectors
fðaÞð0Þ, fðvÞð0Þ, fðvÞð10Þ, dð10Þ and C. The displacement solution then has the same form as (56), with

fð0Þ ¼ Pð�12:176 �2:7322 �12:176 2:7322 ÞT;
fð10Þ ¼ P ð 12:176 �2:9438 12:176 2:9438 ÞT; C ¼ P

L
EA

ð 4:1075 0 ÞT: ð59Þ
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Example 4.4. Next consider the 2-D rigid-jointed square cell grid, which is clamped at the edges and
subjected to a uniform transverse load, Fig. 4(a):

fðn;mÞ ¼ ð�P 0 0 Þ; n ¼ 1; 2; . . . ; 6; m ¼ 1; 2; . . . ; 4;

dðn; 0Þ ¼ dðn; 5Þ ¼ dð0;mÞ ¼ dð7;mÞ ¼ 0; n ¼ 0; 1; . . . ; 7; m ¼ 0; 1; . . . ; 5: ð60Þ

The repeating nodal location of the grid is represented by a single node with two rotational (in the yz- and
xz-planes respectively) and one spatial degree of freedom. The associate substructure is then the crosspiece
shown in Fig. 4b. The 2-D matrix kernel for this lattice has five non-trivial values given below:

Kð0; 1Þ ¼ E
L3

�12I 6IL 0

�6IL 2IL2 0

0 0 �GJL2=E

0B@
1CA; Kð1; 0Þ ¼ E

L3

�12I 0 6IL

0 �GJL2=E 0

�6IL 0 2IL2

0B@
1CA;

Kð0; 0Þ ¼ 2

L3

24EI 0 0

0 ð4EI þ GJÞL2 0

0 0 ð4EI þ GJÞL2

0B@
1CA;

Kð0;�1Þ ¼ KTð0; 1Þ; Kð�1; 0Þ ¼ KTð1; 0Þ ð61Þ

I, J, L, E, and G are respectively the second moment of area, polar second moment of area, length, Young’s
and shear moduli of the individual (circular cross-section) members. Entries (61) were obtained by con-
sidering the crosspiece stiffness matrix. The Fourier image of the kernel is then found according to (40), and
the matrices K, W and Y read

K ¼ 12EI
L

1 0
0 1

	 

; W ¼ 0 1 0

0 0 1

	 
T
and Y ¼ ð 1 0 0 ÞT ð62Þ

Since dðn; 0Þ ¼ dðn; 5Þ ¼ dð0;mÞ ¼ dð7;mÞ ¼ 0 for all n, m, the ðN ;MÞ-periodic functions (N ¼ 7, M ¼ 5)
can be used in the solution form (49), and only two boundary load functions, fðn; 0Þ and fð0;mÞ, are to be
found. Assuming J ¼ 2I ¼ 625=6 mm4, L ¼ 100 mm, E ¼ 2:5G ¼ 2� 105 N/mm2, P ¼ 20 N, and using the
boundary (60) and equilibrium (50) conditions, we obtain

C ¼ ð�0:82447Þ; fð0; 0Þ ¼ 0; fð1; 0Þ ¼ ð 24:611 0 �887:15 ÞT;

fð2; 0Þ ¼ ð 60:163 0 �632:93 ÞT; fð3; 0Þ ¼ ð 75:895 0 �207:26 ÞT;

fð0; 1Þ ¼ ð 24:102 0 880:37 ÞT; fð0; 2Þ ¼ ð 55:229 0 398:34 ÞT: ð63Þ

Fig. 4. Clamped grid under uniform transverse load (a). Associate substructure of the grid (b).
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The remaining values are mirror symmetric to have the opposite signs at the moments, for instance,
fð4; 0Þ ¼ ð 75:895 0 207:26 ÞT, etc. The solution can be now written according to (49)

dðn;mÞ ¼
X6
n0¼0

X4
m0¼0
G7;5ðn� n0;m� m0Þfðn0;m0Þ þ YC; ð64Þ

where the Green’s function is given by expression (47).
Example 4.5. For more complicated structural patterns, we can often write dðn; 0Þ ¼ dðn;MÞ and/or

dð0;mÞ ¼ dðN ;mÞ despite the displacements at the opposite edges of a plate being not equal, and a virtual
interlayer needs to be introduced. Consider the triangular honeycomb panel depicted in Fig. 5(a), where a
pair of adjacent nodes represents the repeating nodal location, Fig. 5(b), and the lattice shown in Fig. 5(c)
gives the associate substructure. Then the virtual interlayer and numbering of repeating nodal sets can be
introduced as shown in Fig. 5(d), so that the lower nodes of sets ð0;mÞ belong to the right edge of panel, and
the upper ones to the left edge. This allows one to write formally dð0;mÞ ¼ dð6;mÞ and introduce only three
ðN ;M þ 1Þ-periodic ðN ¼ M ¼ 6Þ boundary load functions, fðn; 0Þ, fðn; 6Þ and fð0;mÞ. For the bending

Fig. 5. Bending of a triangular honeycomb panel (a). Typical nodal location (b), associate substructure (c), virtual interlayer and

numbering of nodal locations in the modified lattice (d).
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problem shown in Fig. 5(a), the boundary conditions are mixed (either displacements or actual forces are
specified at various locations). Thus the actual fðaÞ and virtual fðvÞ parts of the boundary loads have to be
treated separately, as in Example 4.3, and the boundary conditions can be written as

fðaÞðn; 0Þ ¼ fðaÞðn; 6Þ ¼ 0; fðaÞð0;mÞ ¼ f ðaÞ
x ð0;mÞ f ðaÞ

y ð0;mÞ ðm� 3ÞP 0
� �T

;

dð0;mÞ ¼ 0 0 dxð0;mÞ dyð0;mÞð ÞT; n ¼ 0; 1; . . . ; 5; m ¼ 0; 1; . . . ; 6; ð65Þ

where P describes the strength of the bending load, f ðaÞ
x;y ð0;mÞ are unknown support reactions at the left edge

of the honeycomb, and dx;yð0;mÞ are unknown displacements at the right edge. Similar to the 1-D case (58),
the stiffness matrix relationship for the virtual interlayer gives the compensation demand on the value of
virtual terms fðvÞ. If considered together with the boundary (65) and equilibrium (50) conditions, it provides
a sufficient system of linear equations for finding the unknown actual and virtual components of boundary
loads, and vector C. The sought solution then can be constructed as

dðn;mÞ ¼
X5
n0¼1

ðG6;7ðn� n0;mÞfðn0; 0Þ þGðn� n0;m� 6Þfðn0; 6ÞÞ þ
X6
m0¼0
G6;7ðn;m� m0Þfð0;m0Þ þ YC;

ð66Þ

where the Green’s function is found conventionally by using expression (47). If this structure is treated as
pin-jointed, the non-trivial values of its kernel function read

Fig. 6. Hexagonal honeycomb panel (a); typical nodal location (b), associate substructure (c), modified lattice (d).
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Example 4.6. Finally note that for the hexagonal honeycomb (Fig. 6(a)) under general boundary con-
dition, only two pairs of ðN ;MÞ-periodic (N ¼ M ¼ 6) functions, fðn; 0Þ, fð0;mÞ and dðn; 0Þ, dð0;mÞ, are
required to specify the boundary loads and displacements. Indeed, this holds if the typical nodal set, virtual
interlayer and nodes’ numbering are chosen as depicted in Fig. 6(b)–(d).

5. Conclusions

The static equilibrium state of finite repetitive lattices has been represented by a functional governing
equation written in terms of the physical stiffness operator with a matrix function kernel. The operator acts
as a discrete convolution sum over the kernel and displacement functions, and is written independent of
boundary conditions to represent the structural properties only. The boundary conditions are taken into
account at a subsequent stage of the analysis through a virtual load and substructure technique to formally
close the structure and emulate cyclic symmetry. DFT has been utilised to solve the boundary value
problem with the governing equations for both 1-D and 2-D lattices. The displacement solutions are sought
as vector functions of discrete spatial parameters, to represent response of the lattice to static external loads
and boundary conditions. These solutions have been written as discrete convolution sums over the Green’s
and external load functions. The Green’s function does not depend on the beam or plate boundary con-
ditions either, since it is obtained for the modified closed structure, and describes the basic response be-
haviour of the latter. The virtual boundary loads are included into the final solutions to eliminate the effect
of the virtual substructure. Then the equivalence of static responses of the modified and original lattices is
achieved, if the modified structure solution satisfies the original boundary conditions.
Being exact in the analytical sense, the approach can give essential savings in computational efforts, as

compared with a direct matrix method. The numerical accuracy of the results can be affected only by the
precision of a chosen finite element model for the associate substructure.
The approach can be extended to the free vibrations and dynamic response of regular lattices, where the

governing equation is to be modified with a convolution mass operator, and the dynamic Green’s function
and virtual loads are to be introduced. The use of fast Fourier transform and analysis of non-rectangular
plate-like lattices may also be worthy of separate studies.
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